A broader model for C₄ photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.).

نویسندگان

  • Gudrun Kadereit
  • David Ackerly
  • Michael D Pirie
چکیده

C(4) photosynthesis is a fascinating example of parallel evolution of a complex trait involving multiple genetic, biochemical and anatomical changes. It is seen as an adaptation to deleteriously high levels of photorespiration. The current scenario for C(4) evolution inferred from grasses is that it originated subsequent to the Oligocene decline in CO(2) levels, is promoted in open habitats, acts as a pre-adaptation to drought resistance, and, once gained, is not subsequently lost. We test the generality of these hypotheses using a dated phylogeny of Amaranthaceae s.l. (including Chenopodiaceae), which includes the largest number of C(4) lineages in eudicots. The oldest chenopod C(4) lineage dates back to the Eocene/Oligocene boundary, representing one of the first origins of C(4) in plants, but still corresponding with the Oligocene decline of atmospheric CO(2). In contrast to grasses, the rate of transitions from C(3) to C(4) is highest in ancestrally drought resistant (salt-tolerant and succulent) lineages, implying that adaptation to dry or saline habitats promoted the evolution of C(4); and possible reversions from C(4) to C(3) are apparent. We conclude that the paradigm established in grasses must be regarded as just one aspect of a more complex system of C(4) evolution in plants in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rubisco Evolution in C4 Eudicots: An Analysis of Amaranthaceae Sensu Lato

BACKGROUND Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyses the key reaction in the photosynthetic assimilation of CO₂. In C₄ plants CO₂ is supplied to Rubisco by an auxiliary CO₂-concentrating pathway that helps to maximize the carboxylase activity of the enzyme while suppressing its oxygenase activity. As a consequence, C₄ Rubisco exhibits a higher maximum velocity but lowe...

متن کامل

Complete Chloroplast Genome Sequence of Holoparasite Cistanche deserticola (Orobanchaceae) Reveals Gene Loss and Horizontal Gene Transfer from Its Host Haloxylon ammodendron (Chenopodiaceae)

BACKGROUND The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of pho...

متن کامل

Evolution of C4 photosynthesis--looking for the master switch.

C4 PHOTOSYNTHESIS—THE BASICS C4 photosynthesis is a unique blend of biochemical, anatomical, and gene regulatory characteristics. In the vast majority of C4 plants, i.e. with the exception of single-cell C4 photosynthesis in the Chenopodiaceae, this photosynthetic pathway is the result of the integrated metabolic activities of two distinct, specialized leaf cell types, mesophyll and bundle shea...

متن کامل

De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae)

C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our unde...

متن کامل

The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species.

Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C(4) photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 279 1741  شماره 

صفحات  -

تاریخ انتشار 2012